【摘要】提出了一种面向进阶精简指令集机器(ARM)平台的自标定驾驶员疲劳检测方法。对驾驶员不同身高、体型及车内摄像头不同位置,采用驾驶员初始姿态自标定方法;采用改进的基于深度学习的多任务卷积神经网络(MTCNN),提取人脸识别和特征点,以得到头部姿态、眼睛、嘴巴运动等信息;基于操作员序列的深度卷积神经网络,来判断驾驶员的疲劳状态等级。实验了驾驶员疲劳检测方法。结果表明:相对于没有标定,采用本驾驶员自标定的方式,识别准确性提高了15%,采用MTCNN方法和ARM NEON加速技术,在"全志H5"、"树莓派"和Android手机上,运行速度分别是200、150、140 ms,提高约50%。因而,该检测方法,既提高了系统鲁棒性,也满足实时需求。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《现代制造技术与装备》 2015-07-06
《重庆电子工程职业学院学报》 2015-07-02
《广西广播电视大学学报》 2015-07-01
《中外医疗》 2015-07-06
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点