中教数据库 > 汽车安全与节能学报 > 文章详情

基于深度可分离卷积和多级特征金字塔网络的行人检测

更新时间:2023-05-28

【摘要】为提高行人检测的准确率,提出一种基于卷积神经网络的行人检测方法。该方法以YOLOv3-tiny算法为基础,在骨干网络部分,用深度可分离卷积的网络结构代替原卷积网络结构,加深网络深度。在检测部分,提出一种改进的多级特征金字塔网络,该网络由8个结构相同的使用深度可分离卷积的特征金字塔组成,特征金字塔之间串联连接,将不同金字塔得到的相同尺寸的特征进行融合,利用融合后的特征金字塔进行检测。在Caltech Pedestrian数据集上进行测试。结果表明:该方法的漏检率为57.83%,比梯度方向直方图(HOG)方法低32.53%,比基于深度学习的方法 SA Fast-RCNN和MS-CNN分别低4.67%、3.21%;运行速度为34 ms/帧。因而,该方法满足了实时性要求。

【关键词】

524 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号